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Abstract
1.	 The transmission process of an infectious agent creates a connected chain of hosts 

linked by transmission events, known as a transmission chain. Reconstructing 
transmission chains remains a challenging endeavour, except in rare cases charac-
terized by intense surveillance and epidemiological inquiry. Inference frameworks 
attempt to estimate or approximate these transmission chains but the accuracy 
and validity of such methods generally lack formal assessment on datasets for 
which the actual transmission chain was observed.

2.	 We here introduce nosoi, an open-source r package that offers a complete, tuna-
ble and expandable agent-based framework to simulate transmission chains under 
a wide range of epidemiological scenarios for single-host and dual-host epidemics. 
nosoi is accessible through GitHub and CRAN, and is accompanied by extensive 
documentation, providing help and practical examples to assist users in setting up 
their own simulations.

3.	 Once infected, each host or agent can undergo a series of events during each 
time step, such as moving (between locations) or transmitting the infection, all of 
these being driven by user-specified rules or data, such as travel patterns between 
locations.

4.	 nosoi is able to generate a multitude of epidemic scenarios, that can—for  
example—be used to validate a wide range of reconstruction methods, including 
epidemic modelling and phylodynamic analyses. nosoi also offers a comprehen-
sive framework to leverage empirically acquired data, allowing the user to explore 
how variations in parameters can affect epidemic potential. Aside from research 
questions, nosoi can provide lecturers with a complete teaching tool to offer 
students a hands-on exploration of the dynamics of epidemiological processes 
and the factors that impact it. Because the package does not rely on mathematical 
formalism but uses a more intuitive algorithmic approach, even extensive changes 
of the entire model can be easily and quickly implemented.
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1  | INTRODUC TION

Infectious disease events, especially those resulting from novel 
emerging pathogens, have significantly increased over the past few 
decades, possibly as a result of alterations in various environmental, 
biological, socioeconomic and political factors (Chan et  al.,  2010). 
By definition, infectious agents need to spread through transmis-
sion between hosts. If successful, the resulting transmission process 
creates a connected chain of hosts linked by transmission events, 
usually called a transmission chain. Transmission is highly stochas-
tic and can be influenced by a wide array of intrinsic and extrinsic 
factors, such as within-host dynamics and environmental or host be-
havioural factors. Reconstruction of transmission chains, however, 
remains difficult to achieve, except in certain rare cases character-
ized by intense surveillance and epidemiological inquiry (Mollentze 
et al., 2014; Worby et al., 2016).

Molecular data may represent a critical asset in reconstructing 
the transmission history of a pathogen (Campbell, Cori, Ferguson, 
& Jombart, 2019; De Maio, Worby, Wilson, & Stoesser, 2018; 
Didelot, Fraser, Gardy, & Colijn,  2017; Didelot, Gardy, & Colijn, 
2014; Worby et  al.,  2016). Often, however, the relationship be-
tween individual cases is too distant to allow for the perfect re-
construction of a transmission chain. In that context, the study 
of infectious agents' genomic sequences can be used to recon-
struct, under an evolutionary model, their likely evolutionary his-
tory. These reconstructions rely on evolution occurring on the 
same time-scale as the epidemic or transmission process, which 
is the case for most fast-evolving pathogens such as RNA viruses 
(Romero-Severson, Skar, Bulla, Albert, & Leitner, 2014; Ypma, van 
Ballegooijen, & Wallinga, 2013). The inferred evolutionary history 
has been used in recent years to estimate the timing, the origin 
or the effectiveness of mitigation measures of several epidem-
ics (Dellicour et al., 2018; Dudas, Carvalho, Rambaut, & Bedford, 
2018; Grubaugh et al., 2019; Hill et al., 2019).

The accuracy, validity or limitations of both currently available 
and future methods, however, generally lack formal assessment on 
datasets for which we have been able to observe the actual geo-
graphical spread and the complex factors that shaped its pattern. 
In that context, a simulated dataset is extremely useful as the exact 
transmission history is known and can be compared to the histo-
ries inferred from different software packages. The last decade has 
seen the development of several integrated epidemic and genetic 
simulation tools that can be used to assess the performance of some 
of these models, such as TreeSim (Stadler & Bonhoeffer, 2013), seedy 
(Worby & Read, 2015), outbreaker2 (Campbell et al., 2018) or favites 
(Moshiri, Ragonnet-Cronin, Wertheim, & Mirarab, 2019).

While undoubtedly useful, these tools fall short in accommo-
dating a wide range of epidemiological scenarios. In particular, 

arboviral (e.g. Zika, dengue or yellow fever) outbreaks, where two 
types of hosts participate in the epidemic process, are poorly mod-
elled. These hosts are characterized by drastically different be-
haviour or infection dynamics and cannot be accurately modelled 
using a single host type. Furthermore, geographical location diffu-
sion is simulated in these tools, when possible, on a contact network 
or in discrete space. Yet, recent years have seen the development 
of methods taking advantage of phylogeographical diffusion in con-
tinuous space (Dellicour, Rose, Faria, Lemey, & Pybus, 2016; Lemey, 
Rambaut, Welch, & Suchard, 2010), creating a need for epidemiolog-
ical simulations in a continuous space.

To enable the performance assessment of these methods under 
complex and realistic scenarios, including spread in continuous 
space or arbovirus outbreaks, we present nosoi, a flexible agent-
based transmission chain simulator implemented as an open-source 
r package (R Core Team, 2019).

2  | CHAR AC TERISTIC S

nosoi generalizes and significantly extends a basic model that al-
lowed individual humans and mosquitoes—each one being charac-
terized by a unique set of infection parameters—to interact within 
a simulated environment (Fontaine et al., 2018). It was initially de-
signed to model real-world arboviral epidemics unfolding under 
varying within-host dynamics (Fontaine et al., 2018).

nosoi employs agent-based modelling, which focuses on the  
individual active entities—known as (autonomous) agents—of a sys-
tem and defines their behaviour and the interactions between them. 
The main interest then lies in the global dynamics of and the complex 
phenomena within the system that emerges from the interactions of 
the many individual behaviours. Within nosoi, the agents' behaviour 
is governed by user-specified rules that can accommodate high lev-
els of stochasticity at each level of the epidemic process. Agents can 
experience dual-host dynamics, such as those from human and mos-
quito populations, and exist in structured populations, with differ-
ent behaviours according to host type and/or structure. Population 
structure can either be absent, discrete (e.g. different categories) or 
continuous (such as geographical space). In these structures, agents 
can trigger a movement, a contact or a transmission event, with 
the probability of such an event occurring being potentially host-, 
individual-, structure- and/or time-dependent. These agents are re-
cruited when infected and can either recover or die from the infec-
tion, resulting in their removal from the simulation. The status and 
location of each agent are assessed according to the model during 
each step of the discretized time of the simulation (Figure 1). The 
simulation ends when the user-specified value of the number of in-
fected agents or when the targeted simulation time is reached.

K E Y W O R D S
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In essence, nosoi allows the user to simulate and keep track 
of one or more transmission chains occurring during an infectious 
disease outbreak and, as such, to store and output a (collection 
of) transmission tree(s). Genetic data can be subsequently sim-
ulated along each transmission tree using sequence simulation 
software such as πbuss (Bielejec et al., 2014) or SantaSim (Jariani 
et  al.,  2019), which can then serve as input for phylodynamic 

inference methods. nosoi is accompanied by extensive tutorials, 
helping the user to set up and visualize their simulation, available 
as documentation in the package, or at https://slequ​ime.github.
io/nosoi/.

3  | PR AC TIC AL E X AMPLE

We here showcase nosoi with the starting scenario of a single 
human infected with an Ebolavirus-like pathogen in West Africa. 
The simulated epidemic unfolds in a geographically structured 
host population, specifically in a continuous geographic space, for 
365 days or discrete time-steps. Within-host dynamics, influenc-
ing the probability of exiting the simulation (dying or recovering) 
and the between-host transmission probability, are modelled ac-
cording to published literature that describes Ebolavirus infection 
in humans (Casillas, Nyamathi, Sosa, Wilder, & Sands, 2003; Skrip 
et al., 2017). The remaining parameters (number of daily contacts, 
probability of movement and standard deviation of the random 
walk in continuous space) were empirically set. The number of 
daily contacts is restricted by the number of people living in the 
area, as provided by spatial demographics data obtained from 
WorldPop (www.world​pop.org), to avoid reaching locally unrealis-
tic counts of infected humans. The complete specification and ac-
companying code for this simulation are available as a document on  

F I G U R E  1   Schematic of status and location assessment for 
each agent (in case of a structured population), or host, during 
each discretized time step of the simulation. Optional steps in the 
simulation framework are shown in shades of green and are only 
performed in case of a structured (either discrete or continuous) 
population. Several factors (embedded in the gray box), either 
individually or globally set, can influence these steps according to 
user-specified settings

F I G U R E  2   Visualization of a simulated 
Ebolavirus-like transmission chain in West 
Africa at three time-points (91, 228 and 
365 days after the introduction of the 
first infected host), represented as (a) a 
network, (b) a tree or (c) a tree mapped on 
the continuous space the simulation took 
place in

https://slequime.github.io/nosoi
https://slequime.github.io/nosoi
/
http://www.worldpop.org
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nosoi's website (https://slequ​ime.github.io/nosoi​/artic​les/examp​les/ 
ebola.html).

Over the course of 365 days, the simulation has yielded 3,603 
infected agents. The average number of secondary cases per agent is 
1.12, which is roughly coherent with previous epidemiological esti-
mates of R0 for previous Ebolavirus outbreaks (Van Kerkhove, Bento, 
Mills, Ferguson, & Donnelly, 2015). The increase in infected agents' 
number is exponential, as would be expected considering the spec-
ifications of the model, that is, absence of intervention strategies or 
changes in the simulated environment.

The transmission chain can be represented either as a network 
(Figure 2a) or as a tree (Figure 2b) that can be mapped in the contin-
uous space in which the epidemic took place (Figure 2c). The tree 
representation of the transmission chain can be seen as the gene-
alogy of the pathogen population over which molecular evolution 
generates the observed sequence data, then used to reconstruct this 
same history. In this representation, each internal node is a transmis-
sion event, each tip represents the exit point in time of an agent, and 
the root is the starting point in time of the initially infected agent. 
Branches or sets of connected branches represent the life span of 
each agent. This tree is binary, counts as many tips as the total num-
ber of infected agents and as many internal nodes as transmission 
events.

Other examples are available on nosoi's website illustrating var-
ious scenarios, such as spread of a dengue-like pathogen (dual-host) 
in a discrete space or an unstructured population of hosts. The tuto-
rials also provide guidelines on how to set up simulations in various 
combinations of settings currently available.

4  | USES

Trends in globalization, including expansion in international travel 
and trade, have extended the reach and increased the pace at 
which infectious diseases spread (Chan et al., 2010). These trends 
provide infectious agents with ample opportunities to establish 
and spread successfully, but many practical difficulties remain in 
accurately inferring key aspects of an epidemic. Standard testing 
of models of spread typically focuses on using that same model 
to generate simulated data, which offers important but limited in-
sights and mostly provides a test of proper implementation and 
a way to compare different methodologies. nosoi, however, is a 
phylogenetic model-independent agent-based simulation frame-
work that offers realistic and complex epidemiological scenarios. 
As such, it enables accurate testing of popular inference meth-
ods in both discrete and continuous phylogeography using ei-
ther maximum-likelihood (Ishikawa, Zhukova, Iwasaki, & Gascuel, 
2019) or Bayesian inference (Lemey, Rambaut, Drummond, & 
Suchard, 2009; Lemey et al., 2010; Suchard et al., 2018), which are  
widely used in pathogen phylodynamics. In that regard, an inter-
esting application of our proposed simulation framework could be 
to study the increasingly popular structured coalescent models  
(Bouckaert et  al., 2019; De Maio, Wu, O'Reilly, & Wilson, 2015; 

Müller, Rasmussen, & Stadler, 2017), and to compare their accu-
racy under realistic epidemiological transmission scenarios against 
discrete phylogeographical inference.

nosoi enables the simulation of real-life scenarios of viral out-
breaks, and we provide several example scenarios to showcase its 
capabilities to generate a single transmission chain using different 
settings. An important aspect is that the resulting transmission tree, 
which describes the transmission events between infected hosts, 
differs from the phylogenetic tree, which describes the ancestral 
genetic relationships between pathogens sampled from these hosts. 
In that regard, it is crucial to acknowledge the growing number of 
methods that infer either phylogenetic trees, transmission trees or 
jointly estimate both (for an overview, we refer to Baele, Suchard, 
Rambaut, and Lemey (2017)).

Apart from assessing the performance of various methods 
in reconstructing geographical spread or the dynamics of an in-
fectious agent, nosoi can prove useful for assessing the per-
formance of classic deterministic SIR and SIRS compartmental 
models (Kermack & McKendrick,  1927). These epidemiological 
models estimate the theoretical number of people infected with 
a contagious illness in a closed population over time under some 
assumptions. For example, the original SIR model assumes that the 
population size is fixed, that the incubation period of the infec-
tious agent is instantaneous and that the duration of infectivity is 
the same as the length of the disease. It also assumes a completely 
homogeneous population with no age, spatial or social structure. 
These assumptions can be matched as closely as possible by the 
user-defined settings in nosoi or be violated in more realistic 
settings, allowing to examine the sensitivity of the deterministic 
models to the assumptions under a complex and fine-tuned epide-
miological scenario.

nosoi also offers, in line with its initial purpose (Fontaine 
et  al.,  2018), a comprehensive framework to leverage empirically 
acquired data. A pathogen's within-host dynamics characterized in 
laboratory settings can be embedded into a full stochastic epidemi-
ological model, allowing the user to explore how variation can affect 
its epidemic potential.

Aside from research questions, nosoi can provide lecturers 
with a complete teaching tool to offer students a hands-on ex-
ploration of the dynamics of epidemiological processes and the 
factors that impact it. Because the package does not rely on math-
ematical formalism but uses a more intuitive algorithmic approach, 
even extensive changes of the entire model or part of it can be 
easily and quickly implemented. The documentation provides 
suggestions for visualization using well-known external r-pack-
ages, such as ggplot2 (Wickham,  2009) or ggtree (Yu, Lam, Zhu, 
& Guan, 2018; Yu, Smith, Zhu, Guan, & Lam, 2016). The package 
is also fully integrated in the r and phylogenetic environments, 
and, through the use of the treeio and tidytree r packages (Wang 
et  al.,  2019), simulated transmission trees can be exported in a 
wide variety of formats for downstream analyses, such as the 
beast (Suchard et al., 2018) or jplace (Matsen, Hoffman, Gallagher, 
& Stamatakis, 2012) formats.

https://slequime.github.io/nosoi/articles/examples/ebola.html
https://slequime.github.io/nosoi/articles/examples/ebola.html
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In summary, nosoi provides a complete, tunable and expand-
able framework to simulate epidemiological processes based on 
transmission chains, in a user-friendly manner. Accessible through 
GitHub and the CRAN, the code is well covered by unitary tests and 
accompanied by extensive documentation, providing help and prac-
tical examples to users. Open-source and coded in the widely used r 
language, it allows users to customize their model by implementing 
new mechanisms for all or part of the core model. In addition, and 
contrary to other available tools, by decoupling sequence evolution 
from the epidemiological process, it can connect to any external se-
quence simulator, allowing the user to choose a tool and model that 
can address the biological question of interest.
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